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Abstract
Background  Highly frequent colorectal cancer (CRC) is predicted to have 3.2 million novel cases by 2040. Tumor 
microenvironment (TME) bacteriome and metabolites are proposed to be involved in CRC development. In this 
regard, we aimed to investigate the bacteriome and metabolites of healthy, adenomatous polyp, and CRC tissues.

Methods  Sixty samples including healthy (H), adenomatous polyps (AP), adenomatous polyps-adjacent (APA), cancer 
tumor (CT), and cancer tumor-adjacent (CA) tissues were collected and analyzed by 16 S rRNA sequencing and 1H 
NMR spectroscopy.

Results  Our results revealed that the bacteriome and metabolites of the H, AP, and CT groups were significantly 
different. We observed that the Lachnospiraceae family depleted concomitant with acetoacetate and beta-
hydroxybutyric acid (BHB) accumulations in the AP tissues. In addition, some bacterial species including Gemella 
morbillorum, and Morganella morganii were enriched in the AP compared to the H group. Furthermore, fumarate was 
accumulated concomitant to Aeromonas enteropelogenes, Aeromonas veronii, and Fusobacterium nucleatum subsp. 
animalis increased abundance in the CT compared to the H group.

Conclusion  These results proposed that beneficial bacteria including the Lachnospiraceae family depletion cross-
talk with acetoacetate and BHB accumulations followed by an increased abundance of driver bacteria including G. 
morbillorum, and M. morganii may reprogram polyp microenvironment leading to tumor initiation. Consequently, 
passenger bacteria accumulation like A. enteropelogenes, A.veronii, and F. nucleatum subsp. animalis cross-talking 
fumarate in the TME may aggravate cancer development. So, knowledge of TME bacteriome and metabolites might 
help in cancer prevention, early diagnosis, and a good prognosis.
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Introduction
Colorectal cancer (CRC) was the third most common 
malignancy (9.6% of all cancer incidence), and the sec-
ond deadliest cancer (9.3% of all cancer-related mortal-
ity) worldwide by 2022. Transitioned countries have 3–4 
times higher incidence rates than transitioning countries 
with a progressively increasing rate in countries under-
going major transition including South America, South-
Eastern and South-Central Asia, and Eastern Europe 
countries [1]. There is also an incidence rising shift in the 
younger (individuals less than 50 years) people known 
as early-onset colorectal cancer (EOCRC) [2]. Different 
patterns of incidence in distinct geographical locations 
propose the critical role of environmental risk factors 
in CRC incidence. Specifically, it is suggested that CRC 
is largely affected by several modifiable risk factors like 
colorectal bacteriome and metabolome [3].

The role of colorectal microbiota and especially gut 
bacteriome is becoming increasingly evident in CRC 
pathogenesis as a modifiable risk factor [4]. Several 
studies demonstrated distinct bacterial profiles in CRC 
patient’s stools at various taxonomic levels in compari-
son to healthy individuals [5]. Other researchers also 
observed tumor-specific bacterial profiles in the different 
stages of CRC [6]. On the other hand, tumor microenvi-
ronment (TME) metabolome alterations are also consid-
ered a critical hallmark of CRC [7]. There are numerous 
microbial-derived metabolites in human cells, tissues, 
organs, or biological fluids that have correlations with 
malignancies [8]. It was shown that fecal metabolites 
might have significant roles in CRC initiation [9]. While 
most of the previous studies tried to evaluate the bacte-
riome and metabolome of CRC patients, some of them 
used fecal samples which were concluded not to be indi-
cators of the TMEs [10]. Moreover, adenomatous polyps 
(precancerous stage) as the origination of about 95% of 
the CRC [11] were excluded in several studies. On the 
other hand, it was found that peri-operative interven-
tions in patients undergoing surgery including antibi-
otic or other medication usage, nutrition type, surgical 
stress, and injury might affect the TMEs bacteriome and 
metabolome [12]. So, mucosal tissue sampling during 
endoscopy is preferred to post-operative tissue collec-
tion and also fecal samples [13]. Furthermore, although 
bacteriome-metabolome interactions and cross-talk 
evaluation are crucial steps toward understanding CRC 
pathogenesis mechanisms [14], few researchers con-
duct bacteriome-metabolome studies regarding CRC. 
Considering the preceding information, the goal of our 
study is to evaluate the age and sex-matched healthy gut, 
adenomatous polyps, and colorectal cancer tumor muco-
sal bacteriome and metabolome composition and their 
correlations.

Materials and methods
Study populations and sample collection
From January 2022 to March 2023, 14 CRC patients, 6 
adenomatous polyps patients, and 20 healthy individu-
als were recruited from Tabriz hospitals (Table S1). The 
protocols described in this document were approved by 
the Tabriz Regional Ethics Committee (Tabriz Univer-
sity of Medical Sciences, Tabriz, Iran), No. I.R.TBZMED.
REC.1400.155. All the procedures were done according to 
the Helsinki Declaration, and study participants obtained 
informed consent before the endoscopy, and samples 
were collected during the endoscopy process. None of 
the participants who underwent endoscopic procedures 
used antiplatelet or anticoagulants. This experiment ran-
domly matched participants according to age and gen-
der. Participants in this study did not receive antibiotics, 
neoadjuvant chemotherapy, or radiation therapy three 
months before the endoscopic process.

Colorectal cancer tumors (CT), adenomatous polyps 
(AP), and adjacent normal-appearing tissues (5–10  cm 
away from the edges of CT and AP) including cancer 
tumor adjacent (CA) and adenomatous polyp adjacent 
(APA) were collected from CRC and AP patients under-
going primary endoscopy without medical alterations. 
The bowl preparations were carried out by advising the 
participants to drink 4  L of a polyethylene glycol-elec-
trolyte solution (Pidrolax 4000, SEPIDAJ, Tehran, Iran). 
All colonoscopies were performed using standard elec-
tronic video colonoscopes (BL-7000/VP-7000; FUJIF-
ILM Corporation, Tokyo, Japan). All tissues were taken 
with oval fenestrated spike biopsy forceps (ENDO-FLEX 
GmbH, Germany) with a 2.3  mm outer diameter. Each 
biopsy specimen’s weight was approximately 10 mg. Nor-
mal tissues were taken from healthy individuals (H) who 
had been referred to endoscopy electively with the diag-
nosis of a specialist doctor according to indications such 
as abdominal pain. These individuals were diagnosed as 
completely healthy by performing blood tests and endos-
copy by a specialist doctor and filling out a complete 
questionnaire about any history of chronic diseases, anti-
biotic usage in the last 3 months, familial colorectal can-
cer, and demographic data.

A blinded specialist obtained 60 tissue samples (14 CT, 
14 CA, 6 AP, 6 APA, and 20  H) from CRC, adenoma-
tous polyp, and healthy participants. These tissues were 
washed with sterile NaCl 9% and immediately transferred 
to -80  °C for further metabolic analysis. For 16s rRNA 
sequencing, tissue samples were immersed in the RNA 
later solution (Yekta Tajhiz Azma, Iran) before storing 
them at -80  °C. The clinical diagnosis, tumor stage, and 
histological differentiation were determined by routine 
histopathology examination of the samples by a blinded 
pathologist.
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Sample preparation for 1 H-NMR spectroscopic analysis
Frozen tissue specimens were weighed and suspended 
in methanol (Merck, Germany [4 mL per gram of tis-
sue]) and double-distilled water (0.85 mL/gram of tis-
sue). After the vortex, chloroform (Merck, Germany [2 
mL/gram of tissue]) was added, followed by the addition 
of 50% chloroform (2 mL/gram of tissue). The suspen-
sion was incubated on ice for 30  min and centrifugated 
at 1,000 × g for 30  min at 4  °C. Each specimen’s aque-
ous phase (upper phase) was collected and evaporated 
to dryness under a stream of nitrogen. The residue was 
freeze-dried with a freeze dryer (Epsilon 1–4 LSC plus, 
Germany). The residue was reconstituted with 580 µL of 
D2O containing 30 µM phosphate buffer solution (PBS, 
pH = 7.4) and 0.01 mg/ml sodium (3-trimethylsilyl)-2, 2, 
3, tetradeuteriopropionate (TSP) as a chemical shift ref-
erence (δ0.0). After centrifuging at 12,000 × g for 5 min, 
the 550 µL supernatant was transferred into a 5-mm 
NMR tube for NMR spectroscopy [15].

1 H-NMR spectroscopic analysis
Sixty tissue samples, including healthy (H), cancer 
tumor (CT), cancer tumor-adjacent (CA), adenomatous 
polyps (AP), and adenomatous polyps adjacent (APA) 
were analyzed by 1H NMR spectroscopy at 25oC on a 
Bruker AVANCE III TM 500  MHz CRYO probe instru-
ment (Bruker Biospin GmbH, Rheinstetten, Germany). 
The starting reagents and solvents were purchased 
from Sigma-Aldrich and used as received. The solvents 
used for the experimental NMR analysis (HPLC grade) 
were purchased from Sigma-Aldrich. All other materi-
als were commercial products of analytical grade and 
used as supplied. PBS buffer pH 7.4 was prepared by 
dissolving KH2PO4 (5.1  mg), KCl (4.4  mg), Na2HPO4.
H2O (37.6 mg), and NaCl (161.3 mg) in 20 mL D2O. The 
pH was adjusted to 7.4 by adding NaOH (1 M in D2O). 
Experimental parameters were: TD = 65536, NS = 256, 
DS = 2, D1 = 1 sec, SW = 20.0254 ppm, O1P = 6.175 ppm, 
1TD = 65536, TE = 298  K. Chemical shifts are reported 
in ppm relative to an external standard TSP (δ0.0 ppm in 
D2O. All the 1H-NMR spectra were corrected for phase 
and baseline distortions using MestReNova-14.3.3-33362 
software. All metabolites’ overviews were provided by the 
standard one-dimension spectra. The major metabolites 
in the spectra ranging from 0.5 to 9.5 ppm were identified 
according to literature data and the Human Metabolome 
Database (http://www.hmdb.ca/). The region 4.6–4.9 
ppm was removed to exclude the effect of imperfect 
water signal.

Nontargeted metabolite profiling and data processing 
methods
Identified metabolites in different study groups were 
analyzed using two modules (statistical analysis [single 

factor], and enrichment analysis modules) of a web-based 
platform for the comprehensive analysis of quantitative 
metabolomic data, MetaboAnalyst 6.0 (www.metabo-
analyst.ca [accessed on February 2024]). The Orthogonal 
partial least squares-discriminant analysis (OPLS-DA) 
score plots, S-plots, VIP (variable importance in projec-
tion) plots, and significant analysis of metabolites (SAM) 
were used to improve the study group’s separation. The 
robustness and validity of the OPLS-DA model were 
assessed using the 2000-permutation test. Taxon Set 
Enrichment Analysis (TSEA) was also set to identify 
significantly related diseases to CT tissues metabolites 
group using metabolites sets reported in MetaboAnalyst 
6.0. The disease signatures were shown according to their 
enrichment ratio and p-values.

Sample preparation and total DNA extraction for 16 S rRNA 
sequencing
Genomic DNA extraction from the specimens was 
done using the SkyAmp micro DNA kit (Skygen, Rus-
sia) according to the modified protocol. The initial steps 
of the protocol were modified in the following way. Lysis 
Matrix Y (MP Biomedicals, USA), and tissue fragments 
were placed into 1.5 mL Safe-Lock microcentrifuge tubes 
(Eppendorf, Hamburg, Germany), followed by immedi-
ate addition of 180 µL of GA Buffer and homogenization 
for 5  min at 50  Hz in Qiagen TissueLyser LT (Qiagen, 
Hilden, Germany). Other steps were performed strictly 
according to the DNA extraction protocol. Particularly, 
20 µL of Proteinase K was added and vortexed for 10 s. 
After that, specimens were incubated at 56 °C for 30 min 
in a CH-100 Heating/Cooling Dry Block (BioSan, Latvia). 
Next, 200 µL of GB Buffer and 1 µL of the carrier RNA 
stock solution (1  µg/µL) were added, and tubes were 
incubated at 70  °C for 10  min. Subsequently, 200 µL of 
ice-cold ethanol was added and tubes were incubated at 
room temperature for 5 min. The lysates were transferred 
to the spin columns (in 2 mL collection tubes) and centri-
fuged for 30 s at 13,400 × g. After that the supernatants 
were discarded, 500 µL of GD Buffer was added in every 
spin column and centrifuged for 30 s at 13,400 × g. The 
last step was repeated twice with 600 µL of PV Buffer. 
Then, the spin columns were centrifuged for 2 min and 
incubated at room temperature for 5 min. Finally, the spin 
columns were placed into new 1.5 mL tubes. Twenty-five 
µL of TB Buffer was added in the center of a membrane 
in every column, and incubated for 5 min at 37  °C, fol-
lowed by centrifuging for 2 min to collect purified DNA. 
The quality of the extracted DNA was evaluated using 
1% agarose gel electrophoresis and a Nanodrop 8000 
spectrophotometer (Thermo Fisher Scientific, Waltham, 
MA, USA) at OD260/OD280. Qubit 4.0 Fluorometer 
and dsDNA High Sensitivity Assay Kit (Thermo Fisher 

http://www.hmdb.ca/
http://www.metaboanalyst.ca
http://www.metaboanalyst.ca


Page 4 of 17Feizi et al. Annals of Clinical Microbiology and Antimicrobials            (2025) 24:9 

Scientific, Waltham, MA, USA) were used to measure the 
DNA concentration.

Library construction and sequencing
Preparation of the DNA libraries was performed accord-
ing to the Illumina protocol (Part #15044223, Rev. B.) 
with primers targeting the V3–V4 regions of the SSU 
ribosomal RNA (rRNA) gene, S-D-Bact-0341-b-S-17 
(5′-CCTACGGGNGGCWGCAG-3′) as the forward 
primer and S-D-Bact-0785-a-A-21 (5′-GACTACH-
VGGGTATCTAATCC-3′) as the reverse primer ​[​​​h​t​​t​p​s​​:​/​
/​d​​o​i​​.​o​r​g​/​1​0​.​1​0​9​3​/​n​a​r​/​g​k​s​8​0​8​​​​​]​. Twenty-five µL of the ​r​e​a​c​
t​i​o​n mixture contained both primers (0.4 µL each), 1.25 
µL dNTPs, 0.13 µL Q5 High-Fidelity DNA Polymerase 
(New England Biolabs, USA), 3,75 µL Q5 buffer, and 3 µL 
sample DNA.PCR was performed in triplicates for every 
sample with the following program: 95  °C for 3 min, 25 
cycles 95  °C for 30 s, 56  °C for 30 s, 72  °C for 30 s, and 
final extension 72  °C for 5  min. The amplicons from 
triplicates were mixed and cleaned up using Agencourt 
AMPure XP beads (Beckman Coulter, Brea, CA, USA). 
The adapters and indices were attached to the amplicons 
according to the Illumina protocol (Part #15044223, Rev. 
B). The DNA libraries were validated using real-time 
PCR, normalized, and pooled. Paired-end 2 × 250  bp 
sequencing was performed on the MiSeq platform (Illu-
mina, San Diego, CA, USA) with the Reagent Kit v.2 (Illu-
mina, San Diego, CA, USA).

Bioinformatics and statistical treatment of DNA 
metabarcoding data for bacteriomes
Raw reads were trimmed against primers using Cut-
adapt v. 4.1 [16]. Then, reads were processed (sequence 
quality control, trimming, and chimera removal), and 
exact sequence variants (ESVs, named as zOTUs - 
operational taxonomic units by the authors of the tool) 
were generated using the denoising algorithm UNOISE 
implemented in USEARCH v.11 [17]. The naive Bayes-
ian classifier against the GTDB database (release 207) 
[18] was used for the taxonomy assignment of ESVs. 
ESVs assigned to Eukaryotes or unclassified at the king-
dom level were removed. Alpha diversity was applied 
to analyze taxa diversity within a sample through the 
number of observed ESVs, Shannon diversity index, 
and Chao1 richness, as diversity measures and T-test/
ANOVA as a statistical method. To analyze how closely 
related the samples were to each other, beta diversity 
analyses were determined based on the Bray-Curtis dis-
similarities, Jensen-Shannon Divergence, Unweighted 
and Weighted UniFrac phylogenetic as distance metrics, 
and PERMANOVA (Permutational multivariate analy-
sis of variance) as the statistical method. All distances 
were visualized using the ordination-based method 
of non-metric multidimensional scaling (NMDS) into 

two-dimensional plots. To detect the most frequent sig-
natures of a list of bacterial genera and species with host-
intrinsic taxon sets such as diseases, the TSEA (Taxon 
Set Enrichment Analysis) module was used to enable 
hypothesis generation and data interpretation by per-
forming hypergeometric tests of interest data. Differ-
ential expression analysis for sequence count data v. 2 
(DESeq2) with adjusted cutoff p-value < 0.05 was used to 
identify differences in taxa (including genus and species) 
abundances of different studied groups [19]. A correla-
tion heatmap of colorectal tissue’s bacteriome-metabo-
lome was also created. Data was scaled via autoscaling as 
normalization and distance correlation test was used as 
similarity method. Features with a p-value less than 0.01 
and correlations more than 0.35 were considered sig-
nificant. The Microbiome Analyst 2.0 platform [16] was 
used to perform the diversity and compositional analysis, 
as well as comparative analysis based on the ESVs table 
from the 16  S rRNA sequencing data, and bacteriome-
metabolome correlation analysis of our study. The ESVs 
abundance table was filtered with counts smaller than 4 
and 10% prevalence as low read counts due to probable 
sequencing errors or low-level contaminations. 10% of 
the feature’s lowest percentage was also excluded using 
the inter-quantile range (IQR) as a low variance filter.

Results
1H-NMR spectroscopic analysis
The aqueous phase extracts of different study groups 
(H, CA, CT, AP, and APA) metabolites were shown in 
Fig.  1. These metabolites included acetate, acetoacetate, 
acetone, alanine, betaine, glucose, phosphocholine/cho-
line, phosphocreatine/creatine, dimethylglycine, formate, 
formic acid, fumarate, glutamine, glutaric acid, guanine, 
inosine, isoleucine, lactate, leucine, lysine, methylamine, 
myo-inositol, o-acetyl glycoprotein, phenylalanine, 
serine, succinate, scyllo-inositol, taurine, threonine, 
trimethylamine-N-oxide, tyrosine, uracil, valine, and 
beta-hydroxybutyric acid (BHB).

16 S rRNA sequencing
A rarefaction analysis was performed for each colorectal 
tissue sample sequence dataset resulting in the rarefac-
tion curves that were smooth and reached a plateau for 
most of the samples except for AP7 and APA7 (Fig. 2A). 
The numbers of samples obtained from H, CT, CA, AP, 
and APA groups were 20, 14, 14, 6, and 6, respectively 
(a total of 60 samples). The 16  S rRNA gene fragment 
sequencing generated a total of 2,219,316 read counts, 
with an average of 37,615 reads per sample (maximum 
and minimum counts per sample were 49,220, and 
24,481, respectively). The total ESV number obtained 
was 1,687, and 1,478 of these ESVs had a size of more 
than 2 reads. The average numbers of reads for samples 

https://doi.org/10.1093/nar/gks808
https://doi.org/10.1093/nar/gks808


Page 5 of 17Feizi et al. Annals of Clinical Microbiology and Antimicrobials            (2025) 24:9 

of H, CA, CT, APA, and AP were 37,560; 38,471; 37,591; 
42,817; and 31,532, respectively. The average numbers 
of ESVs per sample for H, CA, CT, APA, and AP groups 
were 173, 144, 135, 284, and 239, respectively. The aver-
age of every ESV counts per sample for H, CA, CT, APA, 
and AP groups were 250, 296, 313, 225, and 201, respec-
tively (Fig. 2B and Table S2).

Bacteriome analysis using bioinformatics tools
Significantly different colorectal bacteriome alpha 
diversity metrics were observed between the studied 
groups. As it was shown in Fig.  3A-C, the alpha diver-
sity decreased throughout CT, CA, H, APA, and AP 
groups, respectively. This was attributed to the richness 
as indicated by the Chao1 index (p-value 0.01811; F-value 
3.2628), and observed species (p-value 0.010908; F-value 
3.6255) (Fig. 3A, and 3B, respectively), as well as to diver-
sity assessed by the Shannon index (p-value 0.011059; 
F-value 3.6156) between the studied groups (Fig.  3C). 
The highest alpha diversity of colorectal bacteriomes 
was related to the CT group, whereas the lowest alpha 
diversity was related to the AP group. The most signifi-
cant differences in alpha diversities were between CT and 

AP. There were also significant differences between the H 
group compared to CA, CT, APA, and AP groups. More-
over, there were no significant differences in alpha diver-
sity between CA compared to CT, and APA compared to 
the AP group (Table S3).

NMDS was used to evaluate the beta diversity of the 
colorectal bacteriomes based on Bray-Curtis (Fig.  3D), 
Jensen-Shannon Divergence (Fig.  3E), Unweighted Uni-
Frac (Fig.  3F), and Weighted UniFrac (Fig.  3G) distance 
matrices and showed significant differences between 
most studied groups. Based on the Bray-Curtis index as 
the distance method and PERMANOVA as the statisti-
cal method, there were significant differences in beta 
diversities between H vs. CT (F- value: 2.65, FDR:0.01), 
H vs. CA (F- value: 2.55, FDR:0.01), H vs. AP (F- value: 
2.24, FDR:0.01), and H vs. APA (F- value: 2.03, FDR:0.02) 
(Fig.  3D). Based on the Jensen-Shannon Divergence as 
distance method, there were also significant differences 
in beta diversities between H vs. CT (F- value: 3.36, 
FDR:0.01), H vs. CA (F- value: 2.94, FDR:0.01), H vs. APA 
(F- value: 2.79, FDR:0.02), and H vs. AP (F- value: 2.16, 
FDR:0.04) (Fig.  3E). Based on the Unweighted UniFrac 
as distance method, there were significant differences in 

Fig. 1  Some of 500 MHz representative 1H NMR spectra (δ0.5–δ9.5) of different study group’s tissue sample metabolites. 1: healthy individuals (H), 2: 
adenomatous polyps adjacent (APA), 3: adenomatous polyps (AP), 4: cancer tumor adjacent (CA), and 5: cancer tumor (CT)
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beta diversities between CT vs. AP (F-value: 2.68, FDR: 
0.04), H vs. CT (F- value: 2.47, FDR: 0.04), CT vs. APA 
(F-value: 2.42, FDR: 0.04), CA vs. AP (F- value: 2.25, FDR: 
0.04), and H vs. AP (F- value: 2.10, FDR: 0.04) (Fig. 3F). 
Based on the Weighted UniFrac as distance method, 
there were significant differences in beta diversities only 
between H vs. AP (F- value: 4.03, FDR:0.05), and H vs. 
CT (F- value: 2.72, FDR:0.05) (Fig. 3G) (Table S4).

The bacterial composition of colorectal tissues was 
classified into 12 phyla, 14 classes, 29 orders, 59 families, 
193 genera, and 325 species using stacked bar plots as 
summarized in Fig. 4. Firmicutes-A (formerly known as 
Bacillota-A) was the most abundant phylum in all studied 
groups except the APA group (45.8%, 41%, 40.1%, 34.1%, 
and 32.6% in the H, CT, CA, AP, and APA groups, respec-
tively). Bacteroidota was the second most abundant phy-
lum (39.5%, 33.5%, 30.9%, 29.8%, and 29.3% in the APA, 
CA, CT, H, and AP groups, respectively). The highest 
proportions of the Fusobacteriota phylum were related 
to the AP (11.7%) and CT groups (4.1%), whereas the H 
and APA groups had the smallest proportions (0.52% and 
0.12%, respectively). Among all groups, only bacteriomes 
of the CT group had representatives of Campylobacte-
rota phylum (0.41%). Total proportions of three phyla 
including Firmicutes-A, Bacteroidota, and Proteobacte-
ria were higher in non-cancerous tissue groups (H, CA, 
and APA) in contrast to CT and AP groups (89.7%, 89.3, 

and 95.4% compared to 85.9% and 83%, respectively). The 
Firmicutes/Bacteroidota (F/B) ratios were 1.77, 1.53, and 
1.32 for the H, CT, and AP groups, respectively. (Fig. 4A). 
At the class level, Clostridia, Bacteroidia, and Gamma-
proteobacteria were the most abundant classes (with an 
average of 38.7, 32.6, and 17.2, respectively). Fusobacte-
riia had higher proportions in AP and CT compared to 
CA, H, and APA (11.76%, 4.1%, opposite to 1.7%, 0.52%, 
and 0.12%, respectively) (Fig. 4B). Bacteroidales was the 
most abundant order among all studied groups except 
for the H group, in which the Lachnospirales was the 
most abundant (33.2% of Lachnospirales in comparison 
to 29.8% of Bacteroidales). Enterobacterales order had 
higher proportions in the AP and APA groups in com-
parison to other groups. Fusobacteriales order had higher 
proportions in AP and CT in contrast to CA, APA, and H 
groups (13.34%, 2.69%, 1.23%, 0.13%, and 0.33%, respec-
tively). Clostridiales order had higher proportions in AP 
and APA in comparison to H, CT, and CA (13.15%, 10.8%, 
0.9%, 0.98%, and 0.15%, respectively). Campylobacterales 
order was only present in the CT group (0.04%) (Fig. 4C). 
At the family level, Fusobacteriaceae family proportions 
decreased sharply throughout AP, CT, CA, H, and APA 
groups (13.3%, 2.7%, 1.2%, 0.3%, and 0.1%, respectively). 
The Clostridiaceae family was predominant in AP and 
APA in contrast to CT, H, and CA (11.5%, 10.05%, 0.83%, 
0.81%, and 0.13%, respectively). Enterobacteriaceae 

Fig. 2  Bacteriome rarefaction curves and library size for studied samples. Rarefaction curves (A) and library size view (B) of 5 different studied groups 
including H (healthy), CA (cancer tumor adjacent), CT (cancer tumor), AP (adenomatous polyps), and APA (adenomatous polyps adjacent) represented 
according to feature abundance table containing raw counts. In the rarefaction curves the vertical axis shows the number of ESVs, and the number of 
reads is shown on the horizontal axis
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family proportions were also decreased throughout APA, 
AP, CA, H, and CT groups (21.5%, 18.6%, 14.7%, 12.2%, 
and 11.6%, respectively). Bacteroidaceae, Lachnospira-
ceae, and Enterobacteriaceae were the most abundant 
families among the studied groups (30.3%, 19.7%, and 
15.7%, respectively) (Fig. 4D).

Furthermore, to identify microbial taxa (including gen-
era and species) that were significantly different between 
studied groups, statistical comparisons were done 
using Deseq2 as a statistical index and adjusted cutoff 

p-value < 0.05. The results of significant genera and spe-
cies were summarized in Table S5.

The Taxon Set Enrichment Analysis TSEA module 
built in the MicrobiomeAnalyst tool was used to detect 
the most frequent microbial taxa related to human 
pathologies and nosologies from a list of microbial fea-
tures found in patients with CRC and healthy people 
[16]. The 5 top related diseases according to TSEA for 
H and CT groups were listed in Table S6. Four out of 
the top five related diseases in the CT group were CRC 
(global signature), colorectal carcinogenesis (carcinoma, 

Fig. 3  Alpha and beta diversities of bacteriomes in studied groups. The figure indicates alpha and beta diversities of colorectal tissue bacteriome at 
the species level (H: healthy, CT: cancer tumor, CA: cancer tumor adjacent, AP: adenomatous polyps, and APA: adenomatous polyps adjacent). (A) alpha 
diversity of different studied groups using observed ESVs as diversity measure, and T-test / ANOVA as statistical method (p-value 0.010908; [ANOVA] F-
value 3.6255). (B) alpha diversity of different studied groups using Chao1 index as diversity measure and T-test / ANOVA as the statistical method (p-value 
0.01811; [ANOVA] F-value 3.2628). (C) alpha diversity of different studied groups using Shannon index as diversity measure and T-test / ANOVA as the 
statistical method (p-value 0.011059; [ANOVA] F-value 3.6156). (D) beta diversity using the ordination-based method of non-metric multidimensional 
scaling (NMDS), Bray-Curtis Index as distance method, and PERMANOVA (Permutational multivariate analysis of variance) as the statistical method ([PER-
MANOVA] F-value: 1.9149; p-value: 0.001). (E) beta diversity using the ordination-based method NMDS, Jensen-Shannon Divergence as the distance 
method, and PERMANOVA as the statistical method ([PERMANOVA] F-value: 2.2486; p-value: 0.001). (F) beta diversity using the ordination-based method 
NMDS Unweighted UniFrac as the distance method, and PERMANOVA as the statistical method ([PERMANOVA] F-value: 1.8716; p-value: 0.002). (G) beta 
diversity using the ordination-based method NMDS Weighted UniFrac as the distance method, and PERMANOVA as the statistical method ([PERMANOVA] 
F-value: 2.1332; p-value: 0.005)
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increase), colorectal neoplasms (increase), and colorectal 
neoplasms (present). On the contrary, none of the first 
5 top related diseases in the H group were related to the 
CRC (Fig. 5, Table S6).

Metabolites
An OPLS-DA was obtained from comparative analysis 
data between different studied groups to verify which 
metabolites were responsible for differentiating the 
samples from different groups including H versus CT, 

H versus AP, and AP versus CT groups. The OPLS-DA 
score graphs (Fig. 6A and C) suggest that different stud-
ied groups had distinct groups of metabolites. The values 
of model validation with permutation tests (2000 per-
mutations) for H vs. CT groups ([R2Y:0.749, p: 0.0085], 
[Q2:0.593, p < 0.0005]), H vs. AP groups ([R2Y:0.987, p: 
0.0085], [Q2:0.827, p:0.002]) were satisfactory, suggest-
ing a statistically significant difference between the meta-
bolic profiles of the studied groups analyzed. In the AP 
versus CT groups, the values of model validation with 

Fig. 4  Bacterial taxonomic composition of bacteriomes in different colorectal tissues (H: healthy, CT: cancer tumor, CA: cancer tumor adjacent, AP: ad-
enomatous polyps, and APA: adenomatous polyps adjacent) in different taxonomic levels (phylum, class, order, family, genus, and species) represented by 
stacked bar plots. Stacked bar chart for relative abundance of the bacterial (A) phyla-level, (B) class-level, (C) order-level, (D) top 30 abundant families, (E) 
top 30 abundant genera, and (F) top 50 abundant species in different colorectal tissues. Features with counts smaller than 4 and 10% prevalence filtered 
as low read counts due to probable sequencing errors or low-level contamination. 10% of the features with the lowest percentages were also excluded 
using the inter-quantile range (IQR) as a low variance filter
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permutation tests (2000 permutations) ([R2Y:0.869, 
p:0.137], [Q2: -0.222, p:0.4185) were not satisfactory, sug-
gesting a statistically insignificant difference between the 
metabolic profiles of these studied groups (Fig.  6D and 
F). The VIP value was employed for metabolite selection 
using each metabolite loading weight and variability of 
the response, to differentiate studied groups from each 
other. The x-axis in the VIP plots shows the value of VIP. 
Metabolite with high VIP has more contribution in the 
group separation (Fig. 6G and I). Advanced significance 
analysis such as significant analysis of metabolites (SAM) 
allowed us to illustrate different study group’s metabolite 
changes (i.e., increased or decreased) in comparison to 
each other. Applying SAM, we identified 5 metabolites 
that significantly increased in the CT group tissues in 
comparison to the H group tissues (BHB, acetoacetate, 
acetate, leucine, and fumarate). When comparing the 
H group with the AP group, we identified 5 metabolites 
significantly different in the two groups, three of them 
decreased in the AP group (phosphocholine, phospho-
creatine, and myo-inositol), and two of them increased 
(acetoacetate and BHB) in the AP group (Fig. 6J and L).

Bacteriome-metabolome associations
To investigate the associations among the colorectal tis-
sue bacteriome and metabolites, the Distance correlation 
test was employed to evaluate the associations between 
the identified bacterial species and metabolites accord-
ing to their relative abundances (Fig. 7). The correlations 
among the differential colorectal tissue metabolites and 
altered bacterial species were summarized in Table S7. 
Significant associations were observed between species in 
colorectal bacteriomes and metabolites comparing differ-
ent groups (H compared to AP [Fig. 7A], and H compared 
to CT [Fig. 7B]). When comparing the AP group with the 

H group, we observed a significant correlation between 
the increase of both acetoacetate and beta-hydroxybu-
tyric acid (BHB) and a decrease in the abundances of 17 
species mostly belonging to the Lachnospiraceae family 
in the AP group. Additionally, our results revealed cor-
relations in a decrease of both phosphocholine/choline 
concentration and relative abundances of Lachnospira 
rogosae and Choladocola sp018223365 in the AP group. 
On the other hand, when comparing bacteriome-metab-
olome associations in the CT and H groups, we found 
significant correlations between the increase of fumarate 
and high relative abundances of Aeromonas enteropelo-
genes, Aeromonas veronii, and Fusobacterium nucleatum 
subsp. animalis in the CT tissues. Moreover, CAG 269 
sp017458285, Prevotella sp900551275, and Scatomorpha 
sp900752445 increase were associated with an increase 
of acetate. In the same way, the relative abundance of 
Anaerotignum faecicola and acetoacetate concentration 
were increased simultaneously and significantly in the 
CT tissues. On the contrary, the decrease of the Chola-
docola sp018223365 relative abundance correlated with 
BHB increase in the CT group.

Discussion
With the importance of CRC bacteriome and metabo-
lome in mind, we investigated the bacterial and metab-
olite composition of the different study group’s mucosal 
tissues. We observed a significant decrease of colorectal 
bacteriome alpha diversity metrics throughout CT, CA, 
H, APA, and AP groups, respectively, suggesting that 
bacteriome richness and evenness significantly decrease 
in the precancerous tissues whereas they sharply increase 
in the cancer tissues when compared to healthy samples. 
In the same way, some researchers concluded that muco-
sal bacterial composition in the cancer group was richer 

Fig. 5  The TSEA (Taxon Set Enrichment Analysis) module. (A) TSEA results using the most prevalent genera and species revealed in bacteriomes of CRC 
patients’ colorectal tissues. (B) TSEA results using the most prevalent genera and species revealed in bacteriomes of healthy individual’s colorectal tissues. 
Each node represents a taxon set with its color based on its p-value, and its size is based on the number of hits to the query. An edge connects two taxon 
sets if the shared hits exceed 20% of their combined taxa
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Fig. 6  Graphs obtained from comparative analysis data between metabolites of healthy (H), adenomatous polyp (AP), and cancer tumor (CT) groups. The 
OPLS-DA (Orthogonal partial least squares-discriminant analysis) score plots (6A-6C), OPLS-DA model validation with permutation tests (2000 permuta-
tions) and cross-validation (6D-6F), VIP (variable importance in projection) plots (6G-6I), and significant analysis of metabolites (SAM) (6J-6L). The green 
points represent metabolites that were significantly different between H vs. CT (6J), H vs. AP (6K), and AP vs. CT (6L). The solid diagonal line represents 
“observed = expected”. The more the variable diverges from the solid line the more likely it is to be significant
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Fig. 7 (See legend on next page.)
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than in the healthy group tissues [20, 21]. However, this is 
in contrast to other studies which found that the micro-
bial diversity of CRC patients was significantly lower than 
that of the healthy controls [22]. It is noteworthy to state 
that they compared tumor tissues with off-tumor normal 
tissues of the same individuals as healthy controls which 
had shown to have similar alpha diversities in other 
research [23]. On the other hand, we found that there 
are significant differences in beta diversity when compar-
ing H with CT, CA, AP, and APA groups. Likewise, other 
researchers showed that there are distinct patterns of 
bacterial distribution among the H, CT, and AP groups 
[24].

Firmicutes and Bacteroidetes are the two most domi-
nant bacterial phyla in the human gut bacteriome rep-
resenting more than 90% of bacterial total composition 
[25]. Although some researchers concluded that the F/B 
ratio has crucial effects on normal intestinal homeosta-
sis [26], other studies suggested that it is presently deli-
cate to associate the F/B ratio with certain health status 
[25]. Our results propose that low F/B ratios may be 
associated with CRC initiation and development. In the 
same way, it was hypothesized that the downregulated 
F/B ratio in colorectal tissues of CRC patients may affect 
the tumorigenesis process [27]. Concerning the phyla 
level, our results showed that the proportion of Fuso-
bacteria significantly increased in AP and CT groups 
when compared to the H group suggesting its proposed 
role in the carcinogenesis initiation and progression. 
Similarly, some studies concluded that there was an 
increasing trend of Fusobacteria with the CRC progres-
sion [28]. On the other hand, our results showed that 
Campylobacterota was only present in the CT group 
suggesting its contribution as a secondary passenger in 
the cancer progression. Recently, some researchers pro-
posed the association of Campylobacterota with intes-
tinal diseases like ulcerative colitis [29]. In addition, we 
found that there was a significant increase in Proteobac-
teria in the AP group when compared with the H and 
CT groups indicating its proposed role in cancer initia-
tion. Likewise, other researchers observed that there was 
a significantly higher abundance of Proteobacteria in 
adenoma polyps compared to the non-adenoma group 
[30]. Moreover, we showed that Patescibacteria was sig-
nificantly increased in the H group compared to the AP 
group. Patescibacteria (also known as candidate phyla 

radiation), is an emerging, uncultured, and ubiquitous 
superphylum that can sometimes be found within the 
human microbiome like the human mouth, lungs, and 
gut [31]. Other researchers indicated that Patescibacteria 
was significantly represented in the gut microbiome of a 
healthy adult population [32]. Since Patescibacteria have 
a range of free-living, episymbiotic, parasitic, and preda-
tory life cycles, they may able to modulate the gut bacte-
riome directly or indirectly by changing the composition 
of other dominant phyla [33]. In the same way, it was 
shown that Saccharibacteria (a member of Patescibacte-
ria) might prevent bacterial-induced inflammation in the 
host mammalians [34].

Concerning the genus level, when comparing the AP 
with the H group, our results showed that there are sig-
nificantly enriched genera in the AP group some of which 
were Morganella, Gemella, and Escherichia. In the same 
way, other researchers showed that Morganella [35], 
Gemella [11], and Escherichia [36] were significantly 
increased in the adenomatous polyps compared to the 
healthy samples indicating their proposed driver role in 
the cancer initiation in precancerous microenvironments. 
Moreover, there were significantly enriched genera in 
the CT group compared to the H group some of which 
were Fusobacterium, Parvimonas, Aeromonas, Campy-
lobacter, Anaerotignum, and Gemella. In parallel, other 
researchers showed that Fusobacterium [37], Parvimo-
nas [23], Campylobacter [38], and Anaerotignum [39] 
had increased abundance in the cancer group compared 
to the healthy group. These two significant consortia of 
bacterial genera are completely different except for the 
Gemella genus indicating that there are distinct bacterial 
groups involved in the cancer initiation and progression 
inside the precancerous and cancerous microenviron-
ments. Even though abundance of Gemella increased in 
the CT group when compared to the H group similar to 
the other research that identified the Gemella genus as a 
non-invasive biomarker for CRC [40], our results in par-
allel to other studies [11] showed that the Gemella genus 
was more prevalent in the AP group compared to the CT 
group indicating that the development of a malignancy-
related bacteriome including Gemella morbillorum 
appears before tumor establishment [41].

Interestingly, when we compared the AP group with 
the CT group, we observed a significant rise of Cam-
pylobacter sp., A. enteropelogenes, F. nucleatum subsp. 

(See figure on previous page.)
Fig. 7  Correlation heatmap of colorectal bacteriome metabolome using Distance correlation test as similarity method. 10% of reads were removed 
as variance filter based on inter-quartile range, reads with counts less than 4 were also removed as abundance filter. Data scaled via autoscaling as 
normalization. Different studied groups were used as primary metadata (fixed effects). Age, BMI, and sex of the participants were used as covariates 
and accounted for in the statistics extracted for the primary metadata. MaAsLine2 is used for microbiome comparison analysis and Limma is used for 
metabolomics data. Features with a p-value less than 0.01 were considered significant. Significant correlations are highlighted with asterisks. The correla-
tion threshold was set to more than 0.35. The color indicates the correlation calculated by the distance test as a similarity method. Comparisons were 
done between the healthy (H) vs. adenomatous polyp (AP) group (A), and the H vs. cancer tumor (CT) group (B) at the species taxonomic level with their 
identified metabolites according to their relative abundances
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nucleatum, Bacteroides fragilis, F. nucleatum subsp. 
animalis, Streptococcus sp., and Parvimonas micra in 
the CT group, as well as a significant reduction of Pre-
votella bivia, G. morbillorum, Morganella sp., Veillonella 
parvula, Bacteroides clarus, and Ruminococcus gnavus. 
In the same way, some researchers concluded that the 
mucosal and fecal microbial profiles of CRC patients are 
different from those of AP patients [11]. On the other 
hand, it was shown that the Fusobacterium genus in the 
stool samples was significantly associated with CRC 
compared to individuals with adenomas indicating that 
Fusobacterium is more likely a passenger multiplying 
in suitable situations of CRC than a causal driver in the 
AP group to establish a cancerous condition [37]. More-
over, other studies showed that Fusobacterium spp. and 
Enterotoxigenic Bacteroides fragilis (ETBF) had higher 
proportions in the late stages of CRC compared to the 
early stages demonstrating their proposed carcinogenic 
contribution after a primary carcinogenic hit [42]. In 
addition, similar to our results, Campylobacter sp. [43], 
A. enteropelogenes [44], and P. micra [45] were shown to 
be enriched and used as discrimination biomarkers of 
CRC from adenoma polyps.

On the other hand, in agreement with our results, the 
proportion of Morganella spp. was shown to increase 
in bacteriomes of the primary gastrointestinal tumors 
and caused colon tumorigenesis producing different 
genotoxic metabolites [46]. Similarly, other researchers 
indicated that even though Prevotella species were not 
cytotoxic or inflammatory, these bacteria were able to 
change the barrier features of the epithelium and finally 
affect the colonization of secondary colonizers [47]. In 
the same way, V. parvula has been shown to increase in 
adenoma patients [48] and modulates its metabolic con-
dition to colonize the intestine during inflammation [49]. 
Additionally, similar to our results, some researchers 
showed that R. gnavus abundance significantly increased 
in adenoma polyp mucosal tissues suggesting that polyp 
microenvironments are inflammatory niches containing 
distinct bacterial groups [36]. Although some researchers 
identified G. morbillorum as a potential non-invasive bio-
marker for colorectal cancer [40], some other researchers 
concluded that the development of a malignancy-related 
bacteriome including G. morbillorum appears before 
tumor establishment [41]. Consequently, our TSEA 
results of significantly changing bacteria within the CT 
and H groups also confirmed that CT-related bacteriome 
had a strong correlation with increased CRC in humans 
validating our bacterial changes associated with colorec-
tal cancer (Fig. 5, Table S6).

Bacterial metabolites could lead to TME metabolic 
activity and ecological composition reconstruction 
resulting in cancer stimulation [8]. In the same way, we 
observed significantly distinct extracted metabolites 

from mucosal samples of different groups. Five metabo-
lites significantly increased in the CT group compared 
to the H group including BHB, acetoacetate, acetate, 
leucine, and fumarate. In the same way, other studies 
showed that there was an accumulation of BHB, aceto-
acetate, and acetate in the mucosal samples of rectal can-
cer compared to healthy tissues [15] indicating an altered 
energy metabolism in the inflammatory conditions [50]. 
Increased amounts of acetate might propose its role as 
a metabolic fuel for ATP supply in CRC [51]. Leucine is 
one of the branched-chain amino acids (BCAAs). Some 
researchers showed that BCAA catabolism loss and its 
consequent enrichment activates mTORC1 and thus 
leads to tumor progression [52]. Furthermore, it has been 
shown that fumarate accumulation in tumors leads to 
carcinogenic pathway activation [53] and it is a metabolic 
barrier to anti-tumor features of CD8+ T cells in the TME 
[54].

Interestingly, our results showed that two metabolites 
increased in the AP group compared to the H group 
including BHB and acetoacetate, whereas three metabo-
lites decreased in the AP group compared to the H group 
including phosphocholine, phosphocreatine, and myo-
inositol. In the same line, a meta-analysis showed that 
there was a significant increase of choline TMA-lyase 
encoding gene (cutC), one of the genes belonging to the 
main trimethylamine synthesis pathways, in bacteri-
omes of adenoma and CRC patients compared to healthy 
samples [55] proposing the reason of decreased amounts 
of choline and increased amounts of trimethylamine-N-
oxide in our AP samples compared to the H group. In 
addition, other studies concluded that gut microbial uti-
lized colonic creatine and phosphocreatine can influence 
gut pathology and physiology by improving the epithelial 
barrier function [56]. Moreover, other studies showed 
that tissue and cellular levels of inositol decreased in the 
polyp tissue compared to healthy tissues in the APCmin/+ 
mice, which suffer from polyps similar to human famil-
ial adenomatous polyposis [57]. Some other researchers 
proposed that myo-inositol might prevent carcinogenesis 
and its administration also decreased the size of adeno-
carcinoma [58].

CRC initiation and progression are strictly associated 
with both the bacteriome and metabolome and their 
potential interconnections [38]. Similarly, when compar-
ing bacteriome and metabolome correlations between 
groups AP and H, our results showed that increased 
concentrations of acetoacetate and BHB had a signifi-
cant correlation with a decrease in relative abundance for 
several species belonging to the Lachnospiraceae family. 
Similarly, other researchers showed that most members 
of the Lachnospiraceae family decreased during colorec-
tal cancer [59, 60]. The Lachnospiraceae family members 
are present in most individual gut core bacteriomes and 
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occupy a large proportion of the total potentially butyr-
ate-producing bacteria [61]. On the other hand, BHB and 
acetoacetate as ketone bodies are proposed to be involved 
in cancer prevention [62] and decreased in CRC patients 
[63]. On the contrary, our results showed that BHB and 
acetoacetate were increased in the tissue samples of the 
AP and CT groups compared to the H group. In parallel, 
other researchers concluded that as a result of the War-
burg effect, glucose is used as fuel by colon cancer cells 
instead of SCFA resulting in the dominance of glycolytic 
metabolism over oxidative phosphorylation in malignant 
colonocytes, which finally leads to butyrate and its down-
stream products (including acetoacetate and BHB) accu-
mulation [64]. In addition, it was shown that mammalian 
crypt structures protect stem/progenitor growth in part 
through a metabolic barrier created by butyrate-feeding 
differentiated colonocytes. Probable crypt destruction 
due to CRC or adenomatous polyps may cause increased 
exposure of butyrate to the stem/progenitor cells which 
may result in proliferation inhibition [65]. Moreover, our 
results showed that choline (or its phosphorylated form) 
decreased in the precancerous AP group. In the same 
way, some researchers concluded that choline metabo-
lism dysregulation has a critical role in cancer initiation 
[66]. Moreover, other researchers found that there is an 
increased concentration of choline TMA-lyase (cutC) in 
CRC samples compared to controls. They also identified 
some unknown species that had the most prevalent cutC 
sequence and were placed within the Lachnospiraceae 
family [55].

When comparing bacteriome and metabolome correla-
tions between groups CT and H, our results showed that 
BHB increase was related significantly to the depletion of 
the Choladocola sp018223365. Acetoacetate enrichment 
was related to the Anaerotignum faecicola increased 
abundance in the CT group in our results. Similarly, 
other researchers showed that Anaerotignum sp. was 
enriched in the cancer group [39]. In addition, higher 
concentrations of acetate were significantly related to 
an increased abundance of CAG 269 sp017458285, Pre-
votella sp900551275, and Scatomorpha sp900752445. 
In the same way, some researchers showed that a level 
of CAG 269 sp. significantly decreased in individu-
als recovered from ulcerative colitis (UC) compared to 
samples with UC at the active stage indicating the prob-
able relationship of the CAG 269 sp. with chronic intes-
tinal inflammatory diseases [67]. Furthermore, our 
results showed that fumarate increase in the CT group 
was significantly related to the A. enteropelogenes, A. 
veronii, and F. animalis higher abundances. Microbial 
metabolites like fumarate can be enriched within the 
TME and be involved in carcinogenesis. Some research-
ers showed that F. nucleatum produces succinate (that 
can be converted to fumarate bidirectionally) facilitating 

CRC development [68]. In the same way, other research-
ers showed that Aeromonas infection leads to succinate 
accumulation [69].

Keeping our interesting findings on one hand, our 
study had some limitations like a relatively small sample 
size of 60 tissue samples on the other hand. Even though 
collecting biopsies during primary endoscopy from indi-
viduals without medical alterations is of great value, we 
should acknowledge that alternative larger cohorts are 
needed to validate further our findings.

Conclusion
In light of our research findings, we demonstrated that 
there are distinct bacteriomes and metabolomes present 
in CRC TMEs, precancerous polyps, and healthy individ-
uals’ gut tissues. Our results indicated that bacterial rich-
ness and evenness in colorectal tissues are significantly 
lower before cancer initiation (adenomatous polyps) 
including depletion in healthy gut-beneficial bacteria like 
Lachnospiraceae family members in concordance with 
beta-hydroxybutyric acid and acetoacetate accumulation 
in the polyp microenvironments. Moreover, our results 
suggest that some driver bacteria accumulation including 
Gemella morbillorum, and Morganella morganii in pre-
cancerous polyps, and increased abundance of passen-
ger bacterial species like Anaerotignum faecicola, CAG 
269 sp., Prevotella sp., and Scatomorpha sp., Aeromonas 
enteropelogenes, Aeromonas veronii, and Fusobacterium 
nucleatum subsp. animalis in concurrence with aceto-
acetate, acetate, and fumarate accumulation within the 
TMEs might have important roles in colorectal cancer 
initiation and progression procedure, respectively. While 
healthy gut bacteriome and metabolome can prevent 
malignancies, bacterial and metabolite composition in 
precancerous adenomatous polyps can be used in early 
CRC diagnosis. In addition, CRC TME composition 
can be used in preventing cancer progression, designing 
novel treatment methods, and therefore achieving good 
prognosis. Further research and confirmation of these 
findings in larger sample sizes would be useful to develop 
metabolome and bacteriome-based preventive, diagnos-
tic, and treatment approaches for CRC.
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